Update: The npm package can now be used in Node.js and Typescript (with Intellisense). Huge optimizations on the sorting and new extra functions published.

Update: Due to popular demand, I've published the package on npm at https://www.npmjs.com/package/@siderite/linqer. Also, while at it, I've moved the entire code to Typescript, fixed a few issues and also create the Linqer.Slim.js file, that only holds the most common methods. The minimized version can be found at https://siderite.github.io/LInQer/LInQer.slim.min.js and again you can use it freely on your websites. Now, I hope you can use it in Node JS as well, I have no idea how to test it and frankly I don't want to. I've also added a tests.slim.html that only tests the slim version of Linqer. This version is now official and I will try to limit any breaking changes from now on. WARNING: Now the type is Linqer.Enumerable, not just Enumerable as before. If you are already using it in code, just do const Enumerable = Linqer.Enumerable; and you are set to go.

Update: LInQer can now be found published at https://siderite.github.io/LInQer/LInQer.min.js and https://siderite.github.io/LInQer/LInQer.extra.min.js and you can freely use it in your web sites. Source code on GitHub.

Update: All the methods in Enumerable are now implemented, and some extra ones as well. Optimizations have been developed for operations like orderBy().take() and .count().

  This entire thing started from a blog post that explained something that seems obvious in retrospect, but you have to actually think about it to realise it: Array functions in Javascript may seem similar to LInQ methods in C#, but they work with arrays! Every time you filter or you map something you create a new array! The post suggested creating functions that would use the modern Javascript features of iterators and generator functions and supplant the standard Array functions. It was brilliant!

  And then the post abruptly veered and swerved into a tree. The author suggested we add the pipe operator to Javascript, just like they have in functional programming languages, so that we can use those static functions with hash characters as placeholders and... ugh! It was horrid! So I decided to solve the problem in a way that was more compatible with my own sensibilities: make it work just like LInQ (or at least like the Java streams).

This is how LInQer was born. You can find the sources on GitHub at /Siderite/LInQer. The library introduces a class called Enumerable, which can wrap any iterable (meaning arrays, but also generator functions or anything that supports for...of), then expose the methods that the Enumerable class in .NET exposes. There is even a unit test file called tests.html. Open it in the browser and see the supported methods. As you can see in the image of the blog post, the same logic (filtering, mapping and slicing a 10 million item array) took 2000ms using standard Array functions and 150ms using the Enumerable class.

"But wait! It says there that Enumerable exposes static methods! What exactly did you improve?", you will ask. In .NET we have something called "extension methods", which are indeed static methods that the language understands apply to specific classes or interfaces and allows you to call them like you would instance methods. So a method that looks like public static int Sum(this IEnumerable<int> enumerable) can be used statically Enumerable.Sum(arr) or like an instance method arr.Sum(). It's syntactic sugar. But enough about C#, in Javascript I've implemented Enumerable as a wrapper, as Javascript doesn't know about interfaces or static extension methods. This class then exposes prototype functions that work the same way as in LInQ.

Here is where the magic happens:

Enumerable.prototype = {
  [Symbol.iterator]() {
    const iterator = this._src[Symbol.iterator].bind(this._src);
    return iterator();
  },

In other words I wrap _src (the original iterable object) in my Enumerable by exposing the same iterator for both! Now both initial object and its wrapper can be used in for...of loops. The difference is that the wrapper now exposes all that juicy functionality. Let's see a simple example: select (which is the logical equivalent of Array.map):

select(op) {
  _ensureFunction(op);
  const gen = function* () {
    for (const item of this) {
      yield op(item);
    }
  }.bind(this);
  return new Enumerable(gen());
},

Here I am constructing a generator function which I bind to the Enumerable instance so that inside it 'this' is always that instance. Then I am returning the wrapper over the generator. In the function I am yielding the result of the op function on each item. Because of how generator functions work, only while iterating will it need to do its work, meaning that if I use the Enumerable into a for...of loop and breaking after three items, the op function will only be applied on those items, not on all of them. In order to use the Enumerable object in regular code, that works with arrays, you just use .toArray and you are done!

Let's see the code in the tests used to compare the standard Array function use with Enumerable:

// this is the large array we are using in both code blocks:
  const largeArray = Array(10000000).fill(10);

// Standard Array functions
  const someCalculation = largeArray
                             .filter(x=>x===10)
                             .map(x=>'v'+x)
                             .slice(100,110);
// Enumerable
  const someCalculation = Linqer.Enumerable.from(largeArray)
                             .where(x=>x===10)
                             .select(x=>'v'+x)
                             .skip(100)
                             .take(10)
                             .toArray();

There are differences from the C# Enumerable, of course. Some things don't make sense, like thenBy after orderBy. It can be done, but it's complicated and in my career I've only used thenBy twice! toDictionary, toHashSet, toLookup, toList have no meaning in Javascript. Use instead toMap, toSet, toObject, toArray. Last, but not least... join. Join is so complicated to use in LInQ that I almost never used it. Also, joining is usually done in the database, so I rarely needed it. I didn't see a point in implementing it. Cast and AsEnumerable also didn't make sense. Stuff like that.

But don't fret. Any function that you want to add to this can simply be added by your own code into Enumerable.prototype! So if you really need something custom, it's easy to add without modifying the original library. Also, I have no idea how kids use and pack libraries nowadays in Javascript. I am testing all this in the browser. If you want it with modules, npm, Node.js... you can do it yourself! :D

There is one disadvantage for the prototype approach and the reason why the initial article suggested to use standalone functions: tree-shaking, the fancy word used to express the automatic elimination of unused code. But I think there is a solution for that, one that I won't implement since I believe the library is small enough and minified and compressed it will be very small indeed. The solution would involve separating each of the LINQ methods (or categories of methods, like first, firstOrDefault, last and lastOrDefault, for example) in different files. Then you can use only what you need and the files would attach the functions to the Enumerable prototype.

In fact, there are a lot of LINQ methods I have never had use for, stuff like intersect and except or append and prepend. It makes sense to create a core Enumerable class and then add other stuff only when required. But as I said, it's small enough to not matter.

Bottom line, I hope you find this library useful or at least it inspires you as it did me when I've read the original blog post from Dan Shappir.

P.S. I am not the only one that had this idea, you might also want to look at linq.js which uses a completely different approach, using regular expressions. I think the closest to what LINQ should be is Manipula, that uses custom iterators for each operation rather than use the same class. Another possibility is linq-collections, which does the work via TypeScript, apparently. Also linq.es6... I am sure there are more examples if one looks closely. Feel free to let me know if you did or know of similar work and also please give me whatever feedback you see fit. I would like this library to be useful, not just a code example for my blog.

I hope you at least heard of the concept of Unit Testing as it is one of the principal pillars of software development. Its purpose is to automatically check the functionality of isolated components of your code, but it adds a lot of benefits:

  • your code becomes more modular - you only worry about the code you change
  • your code becomes more readable - clear dependency chain and tests demonstrate in code what was the purpose of particular features
  • you gain confidence that your code works as you are making changes to it - refactoring without unit tests in place is usually dangerous
  • changing any component with another implementation does not affect the overall application

This post is a companion to the Programming a simple game in pure HTML and Javascript in the sense that it is that game that we will be testing. Also, as per the requirements of that project, we will not be using any of the numerous unit testing frameworks available for Javascript code.

When we left off the development of the game we had three files:

  • complementary.html - the structure of the page
  • complementary.css - the visual design of the page components
  • complementary.js - all the code of the game, including the initialization and the game starting bit

In order to test our individual components, we need to separate them. So let's split complementary.js in four files:

  • complementary.js - just the game start (instantiating Game and initializing it)
  • game.js - the Game class
  • color.js - the Color class
  • elements.js - the custom HTML elements and their registration

Obviously the HTML will change to load all of these Javascript files. When we get to modules, this will become a non issue.

There are things that we could test on the custom HTML elements, but let's leave that aside. Also the two lines in complementary.js will not need testing. The simplest component should be the first to be tested and that is Color.

We start by creating a new HTML file (color tests.html) and we fill it with code that checks the Color class works as expected. First the code and then the discussion:

<html>

<head>
    <script src="color.js"></script>
    <script>
        // this can easily be changed to display a nice report in this page
        const assert ={
            true:(value, message)=> {
                if (value) {
                    console.log('Test PASSED ('+message+')');
                } else {
                    console.warn('Test FAILED');
                    alert(message);
                    throw new Error(message);
                }
            }
        };
    </script>
</head>

<body>
    <script>
        // Arrange
        const color1 = new Color(123);
        const color2 = new Color(123);
        const color3 = new Color(234);
        // Act
        const equalsWorks = color1.equals(color2);
        const notEqualsWorks = !color1.equals(color3);
        // Assert
        assert.true(equalsWorks,'Expected two colors initialized with the same value to be equal');
        assert.true(notEqualsWorks,'Expected two colors initialized with different values not to be equal');
    </script>

    <script>
        // Arrange
        const color = new Color();
        const doubleInvertedColor = color.complement().complement();
        // Act
        const complementAndEqualsWork = color.equals(doubleInvertedColor);
        // Assert
        assert.true(complementAndEqualsWork,'Expected the complementary or a complementary color to be the original color');
    </script>

    <script>
        // Arrange
        const acolor = new Color(0x6789AB);
        const stringColor = acolor.toString();
        // Act
        const toStringWorks = stringColor==='#6789ab';
        // Assert
        assert.true(toStringWorks,'Expected the HTML representation of the color to be #6789ab and it was '+stringColor);
    </script>

</body>

</html>

A test should follow the AAA structure:

  • Arrange - sets up the necessary items for the test to run
    • instantiate classes to be tested
    • mock functionality of dependencies - we will see this when we test Game
  • Act - executes the code intended to be tested and acquires results
  • Assert - verifies that the test results are the ones expected

Normally, a framework would take tests written in a certain way and then produce some sort of report, with nice green and red rows, with messages, with information on where errors occurred and so on. However, I intend to demonstrate the basics of unit testing, so no framework is actually needed.

A unit test:

  • is a piece of code (who unit tests the unit test?!)
  • it requires effort, it is just as prone to bugs as normal code and requires maintenance just like any other code (shit doesn't just happen, it takes time and effort)
  • it requires infrastructure that uses it to periodically test your changes (either someone does it manually or there is some setup to run it automatically and display/email the report)

In the code above I created a script tag for each test in which I am following AAA to create Color instances and then check their functionality does what it should. A very basic assert object is handling the reporting part. It remains homework for the reader to update that part or to plug in an existing unit testing framework.

The Color class is very simple:

  • it supports initializing with a color integer representing the RGB values of the color
  • toString method that returns the HTML representation of the color
  • complement method returns the complement of the color
  • equals method checks if two colors are equal

There are no external dependencies, meaning that it needs nothing from the outside in order to work. Game, for example, requires Color, which is a dependency for Game.

Open the color tests.html file in the browser and open the development tools (F12 or Ctrl-Shift-I) and refresh the page. You should see in the console that all the tests passed. Change something in a test so it fails and it should both throw an error in the console and show you a dialog with the failing test.

Now, let's test Game. The code of the game tests.html file:

<html>

<head>
    <script src="game.js"></script>
    <script>
        // this can easily be changed to display a nice report in this page
        const assert ={
            true:(value, message)=> {
                if (value) {
                    console.log('Test PASSED ('+message+')');
                } else {
                    console.warn('Test FAILED');
                    alert(message);
                    throw new Error(message);
                }
            }
        };
    </script>
</head>

<body>
    <script>
        // Arrange
        const game = new Game();
        // Act
        // Assert
    </script>

</body>

</html>

I used the same structure, the same assert object, only I loaded game.js instead of color.js. Then I wrote a test in which I do nothing than instantiate a Game. If you execute this page it will work just fine. No errors because we have not, in fact, executed anything. We need to execute .init(document), remember?

And now it becomes apparent why I chose to initialize the document from init instead of using window.document in my code. window.document is now the document of the test page, it has no complementary-board element in it. We haven't even defined any custom HTML elements or a Color class. In fact, we can now test that calling init with no parameter will fail:

    <script>
        // Arrange
        const game = new Game();
        // Act
        let anyError = null;
        try {
            game.init();
        } catch(error) {
            anyError = error;
        }
        // Assert
        assert.true(anyError!=null,'Expected the init method of a Game class to fail if run with no parameters ('+anyError+')');
    </script>

And, indeed, if we open the page now we get a console log like this: 

Test PASSED (Expected the init method of a Game class to fail if run with no parameters (TypeError: Cannot read property 'addEventListener' of undefined))

You just learned another important characteristic of a unit test: it tests both what should work and what shouldn't. This is one of the reasons why unit testing is hard. For each piece of code you need to test when it works and when it fails as expected. Now we have to test how Game should work, and that means we get into mocking.

Mocking is when you replace a dependency with something that looks exactly the same, but does something else. For unit tests mock objects need to do the simplest things and those things must be predictable.

Let's see how one of these tests would look:

    <script>
        // Arrange
        const mockDoc = {
            addEventListener:function() {
            }
        };
        const game2 = new Game();
        // Act
        let anyError2 = null;
        try {
            game2.init(mockDoc);
        } catch(error) {
            anyError2 = error;
        }
        // Assert
        assert.true(anyError2==null,'Expected the init method of a Game class to not fail if run with correct parameters ('+anyError2+')');
    </script>

Just by providing an object with an addEventListener function, the initialization of the game now works. mockDoc is a mocked document and this is called mocking.

Let's look at how would a "happy path" test look, one that assumes everything goes correctly and moves through and entire flow:

    <script>
        // Arrange
        const mockDoc3 = {
            testData : {},
            addEventListener:function(eventName,eventHandler) {
                this.testData.eventName = eventName;
                this.onLoad = eventHandler;
            },
            getElementsByTagName:function(tagName) {
                this.testData.tagName = tagName;
                return [this.mockBoard];
            },
            mockBoard: {
                setChoiceHandler:function(handler) {
                    this.choiceHandler=handler;
                }
            }
        };
        const game3 = new Game();
        // Act
        let anyError3 = null;
        try {
            game3.init(mockDoc3);
        } catch(error) {
            anyError3 = error;
        }
        Math = {
            random:function() {
                return 0.4;    
            },
            floor:function(x) { return x; },
            round:function(x) { return x; },
            pow:function(x,p) { if (p==1) return x; else throw new Error('Expected 1 as the exponent, not '+p); }
        };
        Color = {
            index:0,
            new:function(value) {
                return {
                    val: value,
                    equals: function(x) { return x.val==this.val; },
                    complement: function() { return Color.new(1000-this.val); }
                };
            },
            random:function() {
                this.index++;
                return Color.new(this.index*10);
            }
        }
        mockDoc3.onLoad();
        mockDoc3.mockBoard.choiceHandler(3);
        // Assert
        assert.true(anyError3==null,'Expected the init method of a Game class to not fail if run with correct parameters ('+anyError3+')');
        assert.true(mockDoc3.testData.eventName==='DOMContentLoaded','DOMContentLoaded was not handled!');
        assert.true(mockDoc3.testData.tagName==='complementary-board','Game is not looking for a complementary-board element');
        assert.true(game3._roundData.guideColor.val === 10,'Guide color object expected to have val=10 ('+JSON.stringify(game3._roundData.guideColor)+')');
        assert.true(game3._roundData.tries.size === 1,'Expected 1 unsuccessful try ('+JSON.stringify(game3._roundData.tries)+')');
        assert.true(game3._roundData.tries.has(3),'Expected unsuccessful try with value of 3 ('+JSON.stringify(game3._roundData.tries)+')');
        assert.true(game3._log.length === 0,'Expected no score after one unsuccessful try ('+JSON.stringify(game3._log)+')');
        // Act 2 (heh!)
        mockDoc3.mockBoard.choiceHandler(2);
        // Assert 2
        assert.true(game3._roundData.guideColor.val === 60,'Guide color object expected to have val=60 ('+JSON.stringify(game3._roundData.guideColor)+')');
        assert.true(game3._roundData.tries.size === 0,'Expected no unsuccessful tries after correct response ('+JSON.stringify(game3._roundData.tries)+')');
        assert.true(game3._log.length === 1,'Expected one item of score after correct answer ('+JSON.stringify(game3._log)+')');
        assert.true(game3._log[0] === 50,'Expected 50 as the score after one fail and one correct answer ('+JSON.stringify(game3._log)+')');
        
    </script>

There is a lot to unpack here, including the lazy parts of the test. Here are some of the issues with it:

  • it doesn't follow the AAA pattern, it asserts, then acts again, then asserts again
    • while this works, it doesn't encapsulate testing of a single feature
    • it is the equivalent of the classes or methods with multiple responsibilities from normal code
    • the correct way to do it is to write another test, have two choiceHandler calls in the Act part and assert only that particular path
  • it tests internal functionality
    • in order to write the test I had to look at how the Game class works internally and then tailor the test so it works
    • it accesses private data like _log and _roundData
  • the Game class did not abstract all of its dependencies
    • this is painfully obvious when mocking the Math object - in Javascript this is easy, but in other languages the Math functionality comes as an interface (a declaration of available members with no implementation)
    • this is not a test problem, but a Game problem which makes testing tedious
  • test contains logic
    • look at the Math and Color mocks, how they compute values and return objects
  • some values there are particularly chosen to "work"
    • have you noticed how random returns 0.4 so that multiplied with 5 (number of choices) it returns 2, which then is equal with the correct choice?
  • test is not independent
    • Math and Color are replaced with some static objects, thus changing the environment for following tests

But it works, even if it's not very well written. Here are some of its good features:

  • it tests a full game round with one bad and one good choice
  • it doesn't try to go around randomness by adding more code in the assertion part
    • it could have easily gone that way in order to determine the correct color in a random list, thus replicating or reverse engineering the Game logic into the test
  • all the expected results are completely predictable (the score values, the indexes, etc)
  • it tests only Game functionality, not others
    • I could have not mocked Color, loading color.js and thus relying in a single test on functionality from a dependency

The lessons learned from this tell us that both the Game code and the test code could have been written better in regard to maintainability, with dependencies clearly declared, easy to mock or replace. In fact, the greatest gain of a company with hiring a senior developer is not on how well code works, but how much time is saved and how much risk is avoided when the code is written with separation of concerns and unit testing in mind.

It is funny, but when a piece of code is not testable, writing a single unit test forces you to refactor it into a good shape. The rest of the tests only test functionality, as the class has been rewritten with testing in mind. So that is my advice: whenever you write something, even a silly game like Complementary, write one "happy path" unit test per class.

Homework for you: rewrite the Game class and its test class so that testing becomes easier and more correct.

Visual Studio has a nice little feature called Code Coverage Results, which you can find in the Test menu. However, it does absolutely nothing unless you have the Enterprise edition. If you have it, then probably this post is not for you.

How can we test unit test coverage on .NET projects without spending a ton of money?

I have first tried AxoCover, which is a quick install from NuGet. However, while it looks like it does the job, it requires xUnit 2.2.0 and the developer doesn't have the resources to upgrade the extension to the latest xUnit version (which in my case is 2.3.1). In case you don't use xUnit, AxoCover looks like a good solution.

Then I tried OpenCover, which is what AxoCover uses in the background anyway, which is a library that is suspiciously showing in the Visual Studio Manage NuGet Packages as published in Monday, February 8, 2016 (2/8/2016). However, the latest commits on the GitHub site are from April, only three months ago, which means the library is still being maintained. Unfortunately OpenCover doesn't have any graphical interface. This is where ReportGenerator comes in and some batch file coding :)

Bottom line, these are the steps that you need to go through to enable code coverage reporting on your projects:
  1. install the latest version of OpenCover in your unit test project
  2. install the latest version of ReportGenerator in your unit test project
  3. create a folder in your project root called _coverage (or whatever)
  4. add a new batch file in this folder containing the code to run OpenCover, then ReportGenerator. Below I will publish the code for xUnit
  5. run the batch file

Batch file to run coverage and generate a report for xUnit tests:
@echo off
setlocal EnableDelayedExpansion
 
for /d %%f in (..\..\packages\*.*) do (
set name=%%f
set name="!name:~15!"
if "!name:~1,9!" equ "OpenCover" (
set opencover=%%f
)
if "!name:~1,15!" equ "ReportGenerator" (
set reportgenerator=%%f
)
if "!name:~1,20!" equ "xunit.runner.console" (
set xrunner=%%f
)
)
SET errorlevel=0
if "!opencover!" equ "" (
echo OpenCover not found in ..\..\packages !
SET errorlevel=1
) else (
echo Found OpenCover at !opencover!
)
if "!reportgenerator!" equ "" (
echo ReportGenerator not found in ..\..\packages !
SET errorlevel=1
) else (
echo Found ReportGenerator at !reportgenerator!
)
if "!xrunner!" equ "" (
SET errorlevel=1
echo xunit.runner.console not found in ..\..\packages !
) else (
echo Found xunit.runner.console at !xrunner!
)
if %errorlevel% neq 0 exit /b %errorlevel%
 
set cmdCoverage="!opencover:\=\\!\\tools\\opencover.console -register:user -output:coverage.xml -target:\"!xrunner:\=\\!\\tools\\net452\\xunit.console.exe\" \"-targetargs: ..\\bin\\x64\\Debug\\MYPROJECT.Tests.dll -noshadow -parallel none\" \"-filter:+[MYPROJECT.*]* -[MYPROJECT.Tests]* -[MYPROJECT.IntegrationTests]*\" | tee coverage_output.txt"
set cmdReport="!reportgenerator:\=\\!\\tools\\reportgenerator -reports:coverage.xml -targetdir:.\\html"
 
powershell "!cmdCoverage!"
powershell "!cmdReport!"
start "MYPROJECT test coverage" .\html\index.htm

Notes:
  • replace MYPROJECT with your project name
  • the filter says that I want to calculate the coverage for all the assemblies starting with MYPROJECT, but not Tests and IntegrationTests
  • most of the code above is used to find the OpenCover, ReportGenerator and xunit.runner.console folders in the NuGet packages folder
  • powershell is used to execute the command strings and for the tee command, which displays on the console while also writing to a file
  • the little square characters are Escape characters defining ANSI sequences for showing a red text in case of error.

Please feel free to comment with the lines you would use for other unit testing frameworks, I will update the post.